Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 393
1.
Biol Pharm Bull ; 47(4): 868-871, 2024.
Article En | MEDLINE | ID: mdl-38644197

Restoration of blood flow in skeletal muscle after a prolonged period of ischemia induces muscular ischemia-reperfusion injury, leading to local injury/dysfunction in muscles followed by systemic inflammatory responses. However, preventive/curative agents for skeletal muscle ischemia injury are unavailable in clinics to date. Increasing evidence has validated that carbon monoxide (CO) prevents the progression of ischemia-reperfusion injury in various organs owing to its versatile bioactivity. Previously, we developed a bioinspired CO donor, CO-bound red blood cells (CO-RBC), which mimics the dynamics of RBC-associated CO in the body. In the present study, we have tested the therapeutic potential of CO-RBC in muscular injury/dysfunction and secondary systemic inflammation induced by skeletal muscle ischemia-reperfusion. The results indicate that CO-RBC rather than RBC alone suppressed elevation of plasma creatine phosphokinase, a marker of muscular injury, in rats subjected to both hind limbs ischemia-reperfusion. In addition, the results of the treadmill walking test revealed a significantly decreased muscular motor function in RBC-treated rats subjected to both hind limbs ischemia-reperfusion than that in healthy rats, however, CO-RBC treatment facilitated sustained muscular motor functions after hind limbs ischemia-reperfusion. Furthermore, CO-RBC rather than RBC suppressed the production of tumour necrosis factor (TNF)-α and interleukin (IL)-6, which were upregulated by muscular ischemia-reperfusion. Interestingly, CO-RBC treatment induced higher levels of IL-10 compared to saline or RBC treatments. Based on these findings, we suggest that CO-RBC exhibits a suppressive effect against skeletal muscle injury/dysfunction and systemic inflammatory responses after skeletal muscle ischemia-reperfusion.


Carbon Monoxide , Inflammation , Muscle, Skeletal , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Male , Inflammation/drug therapy , Erythrocytes/drug effects , Erythrocytes/metabolism , Rats , Creatine Kinase/blood , Hindlimb/blood supply , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood , Interleukin-6/metabolism , Interleukin-6/blood
2.
Free Radic Biol Med ; 220: 67-77, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38657755

Sarcopenia is characterized by loss of muscle strength and muscle mass with aging. The growing number of sarcopenia patients as a result of the aging population has no viable treatment. Exercise maintains muscle strength and mass by increasing peroxisome growth factor activating receptor γ-conjugating factor-1α (PGC-1α) and Akt signaling in skeletal muscle. The present study focused on the carbon monoxide (CO), endogenous activator of PGC-1α and Akt, and investigated the therapeutic potential of CO-loaded red blood cells (CO-RBCs), which is bioinspired from in vivo CO delivery system, as an exercise mimetic for the treatment of sarcopenia. Treatment of C2C12 myoblasts with the CO-donor increased the protein levels of PGC-1α which enhanced mitochondrial biogenesis and energy production. The CO-donor treatment also activated Akt, indicating that CO promotes muscle synthesis. CO levels were significantly elevated in the skeletal muscle of normal mice after intravenous administration of CO-RBCs. Furthermore, CO-RBCs restored the mRNA expression levels of PGC-1α in the skeletal muscle of two experimental sarcopenia mouse models, denervated (Den) and hindlimb unloading (HU) models. CO-RBCs also restored muscle mass in Den mice by activating Akt signaling and suppressing the muscle atrophy factors myostatin and atrogin-1, and oxidative stress. Treadmill tests further showed that the reduced running distance in HU mice was significantly restored by CO-RBC administration. These findings suggest that CO-RBCs have potential as an exercise mimetic for sarcopenia treatment.

3.
Cancer Sci ; 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38527308

Overcoming resistance to immune checkpoint inhibitors is an important issue in patients with non-small-cell lung cancer (NSCLC). Transcriptome analysis shows that adenocarcinoma can be divided into three molecular subtypes: terminal respiratory unit (TRU), proximal proliferative (PP), and proximal inflammatory (PI), and squamous cell carcinoma (LUSQ) into four. However, the immunological characteristics of these subtypes are not fully understood. In this study, we investigated the immune landscape of NSCLC tissues in molecular subtypes using a multi-omics dataset, including tumor-infiltrating leukocytes (TILs) analyzed using flow cytometry, RNA sequences, whole exome sequences, metabolomic analysis, and clinicopathologic findings. In the PI subtype, the number of TILs increased and the immune response in the tumor microenvironment (TME) was activated, as indicated by high levels of tertiary lymphoid structures, and high cytotoxic marker levels. Patient prognosis was worse in the PP subtype than in other adenocarcinoma subtypes. Glucose transporter 1 (GLUT1) expression levels were upregulated and lactate accumulated in the TME of the PP subtype. This could lead to the formation of an immunosuppressive TME, including the inactivation of antigen-presenting cells. The TRU subtype had low biological malignancy and "cold" tumor-immune phenotypes. Squamous cell carcinoma (LUSQ) did not show distinct immunological characteristics in its respective subtypes. Elucidation of the immune characteristics of molecular subtypes could lead to the development of personalized immune therapy for lung cancer. Immune checkpoint inhibitors could be an effective treatment for the PI subtype. Glycolysis is a potential target for converting an immunosuppressive TME into an antitumorigenic TME in the PP subtype.

4.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 19.
Article En | MEDLINE | ID: mdl-38399475

Although a lot of effort has been put into creating drugs and combination therapies against chronic hepatitis, no effective treatment has been established. Type-I interferon is a promising therapeutic for chronic hepatitis due to its excellent anti-inflammatory effects through interferon receptors on hepatic macrophages. To develop a type-I IFN equipped with the ability to target hepatic macrophages through the macrophage mannose receptor, the present study designed a mouse type-I interferon-mannosylated albumin fusion protein using site-specific mutagenesis and albumin fusion technology. This fusion protein exhibited the induction of anti-inflammatory molecules, such as IL-10, IL-1Ra, and PD-1, in RAW264.7 cells, or hepatoprotective effects on carbon tetrachloride-induced chronic hepatitis mice. As expected, such biological and hepatoprotective actions were significantly superior to those of human fusion proteins. Furthermore, the repeated administration of mouse fusion protein to carbon tetrachloride-induced chronic hepatitis mice clearly suppressed the area of liver fibrosis and hepatic hydroxyproline contents, not only with a reduction in the levels of inflammatory cytokine (TNF-α) and fibrosis-related genes (TGF-ß, Fibronectin, Snail, and Collagen 1α2), but also with a shift in the hepatic macrophage phenotype from inflammatory to anti-inflammatory. Therefore, type-I interferon-mannosylated albumin fusion protein has the potential as a new therapeutic agent for chronic hepatitis.

5.
Heliyon ; 10(3): e25485, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38352801

The pathogenesis of non-alcoholic steatohepatitis (NASH) involves the simultaneous interaction of multiple factors such as lipid accumulation, oxidative stress, and inflammatory response. Here, the effect of human serum albumin (HSA) fused to thioredoxin (Trx) on NASH was investigated. Trx is known to have anti-oxidative, anti-inflammatory, and anti-apoptotic effects. However, Trx is a low molecular weight protein and is rapidly eliminated from the blood. To overcome the low availability of Trx, HSA-Trx fusion protein was produced and evaluated the therapeutic effect on high-fat diet (HFD)-induced NASH model mice. HSA-Trx administered before the formation of NASH pathology showed it to have a preventive effect. Specifically, HSA-Trx was found to prevent the pathological progression to NASH by suppressing lipid accumulation, liver injury markers, and liver fibrosis. When HSA-Trx was administered during the early stage of NASH there was a marked reduction in lipid accumulation, inflammation, and fibrosis in the liver, indicating that HSA-Trx ameliorates NASH pathology. The findings indicate that HSA-Trx influences multiple pathological factors, such as oxidative stress, inflammation, and apoptosis, to elicit a therapeutic benefit. HSA-Trx also inhibited palmitic acid-induced lipotoxicity in HepG2 cells. Taken together, these results indicate that HSA-Trx has potential as a therapeutic agent for NASH pathology.

6.
J Atheroscler Thromb ; 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38382967

AIMS: Acute myocardial infarction (AMI) causes irreversible damage to cardiomyocytes due to the discontinuation of oxygen supply and leads to systemic oxidative stress. It has been reported that high-density lipoprotein (HDL) particles have antioxidant capacity, and reduced antioxidant capacity is associated with decreased cholesterol efflux capacity (CEC). The purpose of this study was to clarify the usefulness of CEC measurement in patients with AMI. METHODS: We investigated the association between CEC and oxidative stress status in a case-control study. This study included 193 AMI cases and 445 age- and sex-matched controls. We examined the associations of CEC with HDL-cholesterol (HDL-C) and oxidized human serum albumin (HSA), an index of systemic oxidative stress status, and the effect of aldehyde dehydrogenase 2 (ALDH2) rs671 polymorphism, which has been reported to affect HDL-C level and risk for MI, on these associations. RESULTS: Both bivariable and multivariable analyses showed that CEC was positively correlated with HDL-C levels in both AMI cases and controls, with a weaker correlation in AMI cases than in controls. In AMI cases, oxidized HSA levels were associated with CEC in both bivariable and multivariable analyses, but not with HDL-C. These associations did not differ among the ALDH2 genotypes. CONCLUSIONS: CEC, but not HDL-C level, reflects systemic oxidative stress status in patients with AMI. CEC measurement for patients with AMI may be useful in that it provides information on systemic oxidative stress status as well as atherosclerosis risk.

7.
Yakugaku Zasshi ; 144(1): 51-56, 2024.
Article Ja | MEDLINE | ID: mdl-38171795

Recent studies have shown that proteins already possess supersulfides during the translation. However, the distribution and the role of supersulfides are not fully understood. In this review, we focus on supersulfides in biological fluids, especially in serum. Various methods for measuring supersulfides have been developed, and these methods have elucidated the presence of supersulfides in serum proteins including serum albumin. Since the levels of supersulfides in serum and serum albumin of patients with chronic kidney disease were lower than those in healthy subjects and recovered by hemodialysis, the levels of supersulfides in serum would be an indicator reflecting oxidative stress. In addition, it has long been known that serum albumin is responsible for sulfur transference. We have applied this phenomenon to the synthesis of sulfur-added albumin (Sn-HSA) by the reaction of serum albumin with sodium polysulfide (Na2Sn). Sn-HSA suppressed the melanin production via scavenging oxidative stress. As described above, studies on the characterization of supersulfides in serum albumin may contribute to the monitoring of redox balance and prevention of oxidative stress-related diseases.


Renal Insufficiency, Chronic , Serum Albumin , Humans , Serum Albumin/metabolism , Oxidative Stress , Oxidation-Reduction , Sulfur
8.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 18.
Article En | MEDLINE | ID: mdl-38256961

Oxidative stress is responsible for the onset and progression of various kinds of diseases including rhabdomyolysis-induced acute kidney injury (AKI). Antioxidants are, therefore, thought to aid in the recovery of illnesses linked to oxidative stress. Supersulfide species have been shown to have substantial antioxidative activity; however, due to their limited bioavailability, few supersulfide donors have had their actions evaluated in vivo. In this study, human serum albumin (HSA) and N-acetyl-L-cysteine polysulfides (NACSn), which have polysulfides in an oxidized form, were conjugated to create a supersulfide donor. HSA is chosen to be a carrier of NACSn because of its extended blood circulation and high level of biocompatibility. In contrast to a supersulfide donor containing reduced polysulfide in HSA, the NACSn-conjugated HSAs exhibited stronger antioxidant activity than HSA and free NACSn without being uptaken by the cells in vitro. The supersulfide donor reduced the levels of blood urea nitrogen and serum creatinine significantly in a mouse model of rhabdomyolysis-induced AKI. Supersulfide donors significantly reduced the expression of oxidative stress markers in the kidney. These results indicate that the developed supersulfide donor has the therapeutic effect on rhabdomyolysis-induced AKI.

9.
Ther Drug Monit ; 2023 Nov 27.
Article En | MEDLINE | ID: mdl-38018864

BACKGROUND: Thiamylal exerts excellent sedative effects. However, it is not routinely used because of its serious adverse effects. This study aimed to clarify the target blood concentration range and infusion rate of thiamylal in children by measuring its blood concentration and evaluating its relationship with efficacy and adverse effects. METHODS: This study was approved by the Ethics Committee of Japanese Red Cross Kumamoto Hospital. The authors included 10 children aged between 1 and 7 years who had received continuous intravenous (IV) infusion of thiamylal for the management of refractory status epilepticus, excluding those who met the exclusion criteria. After a 2 mg/kg bolus injection of thiamylal, continuous IV infusion was initiated at a rate of 2-3 mg/kg/h. Thiamylal concentration in the blood was measured using high-performance liquid chromatography. The State Behavioral Scale and the frequency of bolus injections were used to evaluate efficacy. Blood pressure and heart rate were measured to evaluate adverse effects. Statistical analyses of the time to awakening and the factors affecting it were also conducted. RESULTS: The State Behavioral Scale score during thiamylal administration was -2 or lower in all cases, suggesting that the depth of sedation was sufficient. The frequency of bolus injections decreased in a blood concentration-dependent manner, suggesting that the frequency tended to decrease, especially at thiamylal blood concentrations of 20 mcg/mL or higher. An increase of the infusion rate to 3 mg/kg/h was recommended, because the blood concentration may not reach 20 mcg/mL at an infusion rate of 2 mg/kg/h. There was also a case in which a rapid increase in blood concentration accompanied by a decrease in blood pressure and heart rate was observed when the infusion rate was increased to 4 mg/kg/h. Furthermore, the time to awakening after the end of administration correlated with the highest blood concentration during administration; therefore, delayed awakening was noted when using a high dose of thiamylal. CONCLUSIONS: The target blood concentration of thiamylal in children should be 20-30 mcg/mL, and the infusion rate should be based on 3 mg/kg/h.

10.
Biol Pharm Bull ; 46(10): 1421-1426, 2023.
Article En | MEDLINE | ID: mdl-37779043

Despite the fact that liver fibrosis is an intractable disease with a poor prognosis, effective therapeutic agents are not available. In this study, we focused on bone morphogenetic factor 7 (BMP7) that inhibits transforming growth factor (TGF)-ß signaling, which is involved in liver fibrosis. We prepared an albumin-fused BMP7 (HSA-BMP7) that is retained in the blood and evaluated its inhibitory effect on liver fibrosis. Bile duct ligated mice were used as an acute liver fibrosis model, and carbon tetrachloride-induced liver fibrosis mice were used as a chronic model. All mice were administered HSA-BMP7 once per week. In the mice with bile duct ligation, the administration of HSA-BMP7 significantly suppressed the infiltration of inflammatory cells, the area of fibrosis around the bile duct, and decreased in the level of hydroxyproline as compared with saline administration. The mRNA expression of TGF-ß and its downstream fibrosis-associated genes (α-SMA and Col1a2) were also suppressed by the administration of HSA-BMP7. In the carbon tetrachloride-induced liver fibrosis mice, the HSA-BMP7 administration significantly decreased the hepatic fibrosis area and the level of hydroxyproline. Based on these results, it appears that HSA-BMP7 has the potential for serving as a therapeutic agent for the treatment of liver fibrosis.


Bone Morphogenetic Protein 7 , Liver Cirrhosis , Animals , Mice , Albumins , Carbon Tetrachloride , Hydroxyproline/metabolism , Liver/metabolism , Liver/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Transforming Growth Factor beta1/metabolism , Bone Morphogenetic Protein 7/pharmacology
11.
Antioxidants (Basel) ; 12(9)2023 Sep 01.
Article En | MEDLINE | ID: mdl-37760008

Cisplatin-induced acute kidney injury (AKI) is an important factor that limits the clinical use of this drug for the treatment of malignancies. Oxidative stress and inflammation are considered to be the main causes of not only cisplatin-induced death of cancer cells but also cisplatin-induced AKI. Therefore, developing agents that exert antioxidant and anti-inflammatory effects without weakening the anti-tumor effects of cisplatin is highly desirable. Carbon monoxide (CO) has recently attracted interest due to its antioxidant, anti-inflammatory, and anti-tumor properties. Herein, we report that CO-loaded red blood cell (CO-RBC) exerts renoprotective effects on cisplatin-induced AKI. Cisplatin treatment was found to reduce cell viability in proximal tubular cells via oxidative stress and inflammation. Cisplatin-induced cytotoxicity, however, was suppressed by the CO-RBC treatment. The intraperitoneal administration of cisplatin caused an elevation in the blood urea nitrogen and serum creatinine levels. The administration of CO-RBC significantly suppressed these elevations. Furthermore, the administration of CO-RBC also reduced the deterioration of renal histology and tubular cell injury through its antioxidant and anti-inflammatory effects in cisplatin-induced AKI mice. Thus, our data suggest that CO-RBC has the potential to substantially prevent the onset of cisplatin-induced AKI, which, in turn, may improve the usefulness of cisplatin-based chemotherapy.

12.
Intern Med ; 62(22): 3267-3275, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37612082

Vaccination against COVID-19 has raised concerns about myocarditis in young men, as out-of-hospital cardiac arrest (OHCA) or sudden death after vaccination has been reported sporadically. Common features of these cases are occurrence in young men, within a few weeks after vaccination, in patients with no structural heart diseases. Cases of unexplained nocturnal death showed fibrotic or hypertrophied myocardium, and one case of OHCA presented ventricular fibrillation (VF) triggered by a prominent J wave on an automated external defibrillator and histopathologic findings compatible with myocarditis. Both myocarditis and J waves are prevalent in young men, and these cases imply that myocarditis augments J waves, which trigger VFs, and primary electrical disorders are a leading cause of death. To prevent such issues, artificial intelligence (AI)-assisted interpretation of historical electrocardiogram findings may help predict future J wave formation leading to VF, as digital electrocardiogram (ECG) findings are well suited for AI interpretation.


COVID-19 , Myocarditis , Out-of-Hospital Cardiac Arrest , Humans , Male , Arrhythmias, Cardiac , Artificial Intelligence , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Myocarditis/etiology , Out-of-Hospital Cardiac Arrest/therapy , Vaccination , Ventricular Fibrillation
13.
ACS Nano ; 17(17): 16668-16681, 2023 09 12.
Article En | MEDLINE | ID: mdl-37579503

Hepatitis is an inflammation of the liver caused by the inadequate elimination of reactive oxygen species (ROS) derived from Kupffer cells. Edaravone is clinically used as an antioxidant but shows poor liver distribution. Herein, we report on the design of a Kupffer cell-oriented nanoantioxidant based on a disulfide cross-linked albumin nanoparticle containing encapsulated edaravone (EeNA) as a therapeutic for the treatment of hepatitis. Since the edaravone is bound to albumin, this results in a soluble and stable form of edaravone in water. Exchanging the intramolecular disulfide bonds to intermolecular disulfide bridges of albumin molecules allowed the preparation of a redox responsive albumin nanoparticle that is stable in the blood circulation but can release drugs into cells. Consequently, EeNA was fabricated by the nanoscale self-assembly of edaravone and albumin nanoparticles without the additives that are contained in commercially available edaravone preparations. EeNA retained its nanostructure under serum conditions, but the encapsulated edaravone was released efficiently under intracellular reducing conditions in macrophages. The EeNA was largely distributed in the liver and subsequently internalized into Kupffer cells within 60 min after injection in a concanavalin-A-induced hepatitis mouse. The survival rate of the hepatitis mice was significantly improved by EeNA due to the suppression of liver necrosis and oxidative stress by scavenging excessive ROS. Moreover, even through the postadministration, EeNA showed an excellent hepatoprotective action as well. In conclusion, EeNA has the potential for use as a nanotherapeutic against various types of hepatitis because of its Kupffer cell targeting ability and redox characteristics.


Hepatitis , Nanoparticles , Animals , Mice , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Edaravone , Hepatitis/drug therapy , Albumins/metabolism , Oxidation-Reduction , Nanoparticles/chemistry , Disulfides
14.
Cancer Res Commun ; 3(6): 1026-1040, 2023 06.
Article En | MEDLINE | ID: mdl-37377611

Resistance to immune checkpoint blockade remains challenging in patients with non-small cell lung cancer (NSCLC). Tumor-infiltrating leukocyte (TIL) quantity, composition, and activation status profoundly influence responsiveness to cancer immunotherapy. This study examined the immune landscape in the NSCLC tumor microenvironment by analyzing TIL profiles of 281 fresh resected NSCLC tissues. Unsupervised clustering based on numbers and percentages of 30 TIL types classified adenocarcinoma (LUAD) and squamous cell carcinoma (LUSQ) into the cold, myeloid cell-dominant, and CD8+ T cell-dominant subtypes. These were significantly correlated with patient prognosis; the myeloid cell subtype had worse outcomes than the others. Integrated genomic and transcriptomic analyses, including RNA sequencing, whole-exome sequencing, T-cell receptor repertoire, and metabolomics of tumor tissue, revealed that immune reaction-related signaling pathways were inactivated, while the glycolysis and K-ras signaling pathways activated in LUAD and LUSQ myeloid cell subtypes. Cases with ALK and ROS1 fusion genes were enriched in the LUAD myeloid subtype, and the frequency of TERT copy-number variations was higher in LUSQ myeloid subtype than in the others. These classifications of NSCLC based on TIL status may be useful for developing personalized immune therapies for NSCLC. Significance: The precise TIL profiling classified NSCLC into novel three immune subtypes that correlates with patient outcome, identifying subtype-specific molecular pathways and genomic alterations that should play important roles in constructing subtype-specific immune tumor microenvironments. These classifications of NSCLC based on TIL status are useful for developing personalized immune therapies for NSCLC.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Protein-Tyrosine Kinases/metabolism , Lymphocytes, Tumor-Infiltrating , Proto-Oncogene Proteins/metabolism , Signal Transduction/genetics , Tumor Microenvironment/genetics
15.
Alzheimers Dement ; 19(11): 5173-5184, 2023 11.
Article En | MEDLINE | ID: mdl-37166019

INTRODUCTION: Alzheimer's disease (AD) is heterogeneous, both clinically and neuropathologically. We investigated whether polygenic risk scores (PRSs) integrated with transcriptome profiles from AD brains can explain AD clinical heterogeneity. METHODS: We conducted co-expression network analysis and identified gene sets (modules) that were preserved in three AD transcriptome datasets and associated with AD-related neuropathological traits including neuritic plaques (NPs) and neurofibrillary tangles (NFTs). We computed the module-based PRSs (mbPRSs) for each module and tested associations with mbPRSs for cognitive test scores, cognitively defined AD subgroups, and brain imaging data. RESULTS: Of the modules significantly associated with NPs and/or NFTs, the mbPRSs from two modules (M6 and M9) showed distinct associations with language and visuospatial functioning, respectively. They matched clinical subtypes and brain atrophy at specific regions. DISCUSSION: Our findings demonstrate that polygenic profiling based on co-expressed gene sets can explain heterogeneity in AD patients, enabling genetically informed patient stratification and precision medicine in AD. HIGHLIGHTS: Co-expression gene-network analysis in Alzheimer's disease (AD) brains identified gene sets (modules) associated with AD heterogeneity. AD-associated modules were selected when genes in each module were enriched for neuritic plaques and neurofibrillary tangles. Polygenic risk scores from two selected modules were linked to the matching cognitively defined AD subgroups (language and visuospatial subgroups). Polygenic risk scores from the two modules were associated with cognitive performance in language and visuospatial domains and the associations were confirmed in regional-specific brain atrophy data.


Alzheimer Disease , Humans , Alzheimer Disease/pathology , Transcriptome , Plaque, Amyloid/genetics , Plaque, Amyloid/pathology , Brain/pathology , Risk Factors , Atrophy/pathology
16.
Toxins (Basel) ; 15(3)2023 02 26.
Article En | MEDLINE | ID: mdl-36977070

Fat atrophy and adipose tissue inflammation can cause the pathogenesis of metabolic symptoms in chronic kidney disease (CKD). During CKD, the serum levels of advanced oxidation protein products (AOPPs) are elevated. However, the relationship between fat atrophy/adipose tissue inflammation and AOPPs has remained unknown. The purpose of this study was to investigate the involvement of AOPPs, which are known as uremic toxins, in adipose tissue inflammation and to establish the underlying molecular mechanism. In vitro studies involved co-culturing mouse-derived adipocytes (differentiated 3T3-L1) and macrophages (RAW264.7). In vivo studies were performed using adenine-induced CKD mice and AOPP-overloaded mice. Fat atrophy, macrophage infiltration and increased AOPP activity in adipose tissue were identified in adenine-induced CKD mice. AOPPs induced MCP-1 expression in differentiated 3T3-L1 adipocytes via ROS production. However, AOPP-induced ROS production was suppressed by the presence of NADPH oxidase inhibitors and the scavengers of mitochondria-derived ROS. A co-culturing system showed AOPPs induced macrophage migration to adipocytes. AOPPs also up-regulated TNF-α expression by polarizing macrophages to an M1-type polarity, and then induced macrophage-mediated adipose inflammation. In vitro data was supported by experiments using AOPP-overloaded mice. AOPPs contribute to macrophage-mediated adipose inflammation and constitute a potential new therapeutic target for adipose inflammation associated with CKD.


Advanced Oxidation Protein Products , Renal Insufficiency, Chronic , Mice , Animals , Reactive Oxygen Species/metabolism , Macrophage Activation , Inflammation/metabolism , Renal Insufficiency, Chronic/metabolism , Obesity , Kidney/metabolism
17.
Nutrients ; 15(4)2023 Feb 04.
Article En | MEDLINE | ID: mdl-36839168

Circulating fatty acid composition is assumed to play an important role in metabolic dysfunction-associated fatty liver disease (MAFLD) pathogenesis. This study aimed to investigate the association between the overall balance of serum fatty acid composition and MAFLD prevalence. This cross-sectional study involved 400 Japanese individuals recruited from a health-screening program. We measured fatty acids in serum lipids using gas chromatography-mass spectrometry. The serum fatty acid composition balance was evaluated using fuzzy c-means clustering, which assigns individual data points to multiple clusters and calculates the percentage of data points belonging to multiple clusters, and serum fatty acid mass%. The participants were classified into four characteristic subclasses (i.e., Clusters 1, 2, 3, and 4), and the specific serum fatty acid composition balance (i.e., Cluster 4) was associated with a higher MAFLD prevalence. We suggest that the fuzzy c-means method can be used to determine the circulating fatty acid composition balance and highlight the importance of focusing on this balance when examining the relationship between MAFLD and serum fatty acids.


Fatty Acids , Non-alcoholic Fatty Liver Disease , Humans , Cross-Sectional Studies , Cluster Analysis , Gas Chromatography-Mass Spectrometry
18.
J Control Release ; 355: 42-53, 2023 03.
Article En | MEDLINE | ID: mdl-36690035

Non-alcoholic fatty liver disease (NAFLD) currently affects about 25% of the world's population, and the numbers continue to rise as the number of obese patients increases. However, there are currently no approved treatments for NAFLD. This study reports on the evaluation of the therapeutic effect of a recombinant human serum albumin-fibroblast growth factor 21 analogue fusion protein (HSA-FGF21) on the pathology of NAFLD that was induced by using two high-fat diets (HFD), HFD-60 and STHD-01. The HFD-60-induced NAFLD model mice with obesity, insulin resistance, dyslipidemia and hepatic lipid accumulation were treated with HSA-FGF21 three times per week for 4 weeks starting at 12 weeks after the HFD-60 feeding. The administration of HSA-FGF21 suppressed the increased body weight, improved hyperglycemia, hyperinsulinemia, and showed a decreased accumulation of plasma lipid and hepatic lipid levels. The elevation of C16:0, C18:0 and C18:1 fatty acids in the liver that were observed in the HFD-60 group was recovered by the HSA-FGF21 administration. The increased expression levels of the hepatic fatty acid uptake receptor (CD36) and fatty acid synthase (SREBP-1c, FAS, SCD-1, Elovl6) were also suppressed. In adipose tissue, HSA-FGF21 caused an improved adipocyte hypertrophy, a decrease in the levels of inflammatory cytokines and induced the expression of adiponectin and thermogenic factors. The administration of HSA-FGF21 to the STHD-01-induced NAFLD model mice resulted in suppressed plasma ALT and AST levels, oxidative stress, inflammatory cell infiltration and fibrosis. Together, HSA-FGF21 has some potential for use as a therapeutic agent for the treatment of NAFLD.


Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Albumins/metabolism , Diet, High-Fat/adverse effects , Lipids/pharmacology , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Serum Albumin, Human
20.
J Cachexia Sarcopenia Muscle ; 14(1): 553-564, 2023 02.
Article En | MEDLINE | ID: mdl-36562292

BACKGROUND: Targeting of the apelin-apelin receptor (Apj) system may serve as a useful therapeutic intervention for the management of chronic kidney disease (CKD)-induced skeletal muscle atrophy. We investigated the roles and efficacy of the apelin-Apj system in CKD-induced skeletal muscle atrophy. METHODS: The 5/6-nephrectomized mice were used as CKD models. AST-120, a charcoal adsorbent of uraemic toxins (8 w/w% in diet), or apelin (1 µmol/kg) was administered to CKD mice to investigate the mechanism and therapeutic potential of apelin on CKD-induced skeletal muscle atrophy. The effect of indoxyl sulfate, a uraemic toxin, or apelin on skeletal muscle atrophy was evaluated using mouse myoblast cells (C2C12 cells) in vitro. RESULTS: Skeletal muscle atrophy developed over time following nephrectomy at 12 weeks, as confirmed by a significant increase of atrogin-1 and myostatin mRNA expression in the gastrocnemius (GA) muscle and a decrease of lower limb skeletal muscle weight (P < 0.05, 0.01 and 0.05, respectively). Apelin expression in GA muscle was significantly decreased (P < 0.05) and elabela, another Apj endogenous ligand, tended to show a non-significant decrease at 12 weeks after nephrectomy. Administration of AST-120 inhibited the decline of muscle weight and increase of atrogin-1 and myostatin expression. Apelin and elabela expression was slightly improved by AST-120 administration but Apj expression was not, suggesting the involvement of uraemic toxins in endogenous Apj ligand expression. The administration of apelin at 1.0 µmol/kg for 4 weeks to CKD mice suppressed the increase of atrogin-1 and myostatin, increased apelin and Apj mRNA expression at 30 min after apelin administration and significantly ameliorated weight loss and a decrease of the cross-sectional area of hindlimb skeletal muscle. CONCLUSIONS: This study demonstrated for the first time the association of the Apj endogenous ligand-uraemic toxin axis with skeletal muscle atrophy in CKD and the utility of therapeutic targeting of the apelin-Apj system.


Myostatin , Renal Insufficiency, Chronic , Mice , Animals , Apelin/pharmacology , Apelin/therapeutic use , Apelin/metabolism , Myostatin/metabolism , Ligands , Uremic Toxins , Muscle, Skeletal/pathology , Apelin Receptors/genetics , Apelin Receptors/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/metabolism , RNA, Messenger/metabolism
...